Extending my simulation examples into the world of generalized linear models, I simulate Poisson data to explore what a quadratic relationship looks like on the scale of the data when fitting a generalized linear model with a log link.

Unstandardizing coefficients in order to interpret them on the original scale can be needed when explanatory variables were standardized to help with model convergence when fitting generalized linear mixed models. Here I show one approach to unstandardizing for a generalized linear mixed model fit with lme4.

Checking for model fit from generalized linear mixed models (GLMM) can be challenging. The DHARMa package helps with this by giving simulated residuals but doesn't work with all model types. I show how to use tools in DHARMa to extend it for use with unsupported models fit with glmmTMB() and zeroinfl().

Ariel Muldoon

I currently work as a consulting statistician, advising natural and social science researchers on statistics, statistical programming, and study design. I create and teach R workshops for applied science graduate students who are just getting started in R, where my goal is to make their transition to a programming language as smooth as possible. See my workshop materials at my website.